Folding minimal sequences: the lower bound for sequence complexity of globular proteins.

نویسندگان

  • P Romero
  • Z Obradovic
  • A K Dunker
چکیده

Alphabet size and informational entropy, two formal measures of sequence complexity, are herein applied to two prior studies on the folding of minimal proteins. These measures show a designed four-helix bundle to be unlike its natural counterparts but rather more like a coiled-coil dimer. Segments from a simplified sarc homology 3 domain and more than 2000000 segments from globular proteins both have lower bounds for alphabet size of 10 and for entropy near 2.9. These values are therefore suggested to be necessary and sufficient for folding into globular proteins having both rigid side chain packing and biological function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c

Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...

متن کامل

Why do proteins divide into domains? Insights from lattice model simulations.

It is known that larger globular proteins are built from domains, relatively independent structural units. A domain size seems to be limited, and a single domain consists of from few tens to a couple of hundred amino acids. Based on Monte Carlo simulations of a reduced protein model restricted to the face centered simple cubic lattice, with a minimal set of short-range and long-range interactio...

متن کامل

What is the minimum number of letters required to fold a protein?

Experimental studies have shown that the full sequence complexity of naturally occurring proteins is not required to generate rapidly folding and functional proteins, i.e. proteins can be designed with fewer than 20 letters. This raises the question of what is the minimum number of amino acid types required to encode complex protein folds? Here, we investigate this issue from three aspects. Fir...

متن کامل

Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues.

Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20-22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition ...

متن کامل

Learning about protein folding via potential functions.

Over the last few years we have developed an empirical potential function that solves the protein structure recognition problem: given the sequence for an n-residue globular protein and a collection of plausible protein conformations, including the native conformation for that sequence, identify the correct, native conformation. Having determined this potential on the basis of only some 6500 na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 462 3  شماره 

صفحات  -

تاریخ انتشار 1999